
Resource-Bounded Scheduling Under Uncertainty

Jeremy Frank
Richard Dearden∗

NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035-1000,

{frank,dearden}@email.arc.nasa.gov

Abstract

We discuss the problem of scheduling tasks that con-
sume uncertain amounts of a resource with known ca-
pacity and where the tasks have uncertain utility. In
these circumstances, we would like to find schedules
that exceed a lower bound on the expected utility when
executed. We describe several different event execution
models that motivate different formulations of the ex-
pected value of a schedule. We show that the problems
are NP-complete, and present results that characterize
the behavior of some simple heuristics over a variety of
problem classes.

Introduction
Consider a hypothetical space mission designed to ob-
serve objects of different characteristics with an instru-
ment. The spacecraft has a limited amount of onboard
data storage and power. Each observation requires an
uncertain amount of power and data storage, and has
uncertain scientific value. Data can be transmitted back
to Earth, but transmission rates are uncertain. Finally,
there may be dependencies among observations. Some
observations may depend on calibration observations or
other events. This both induces precedence constraints,
and the failure of the calibration implies that the de-
pendent observation need not be performed.

This scenario is not really hypothetical; many
scheduling tasks derived from space missions and other
applications have such characteristics. A wide variety
of approaches have been used to address such problems.
Simple dispatch schemes make decisions about the next
task based on the current state of the system, but
without considering the downstream impact of these
decisions. More sophisticated approaches integrate a
long-range planner with a reactive plan execution sys-
tem using a deterministic action outcome model. The
long-range planner generates a plan far into the fu-
ture. The reactive planning system modifies this plan
when the world changes (KFS+03) . Other techniques
use explicit models of uncertainty to drive the search
for schedules. MDP-based approaches can be used to
generate “policies” that handle all possible execution

∗Research Institute for Advanced Computer Science

paths (SBM98; BL00). MDP approaches face problems:
usually these approaches cannot handle continuous ac-
tion outcomes, scale only to limited problem sizes, and
mappings from state to action are hard to understand.
Other approaches include contingent scheduling, where
a limited number of contingencies are generated to pro-
duce schedules with the best expected value (DBS94;
MSW03).

In this paper, we consider a simple model in which the
schedule execution system is unable to do rescheduling,
and it is too expensive to store a contingent schedule or
MDP. In this case, a schedule consists of a permutation
of the tasks. Due to the uncertainty of resource con-
sumption, some scheduled tasks may not actually be
performed when a schedule is executed or may “fail”
and provide no utility. If we assume that we know the
distribution of resource consumption and job utility, we
can compute the expected utility of a schedule by ac-
counting for both the uncertain resource consumption
and the uncertain utility. We can then find a schedule
that maximizes the expected utility, or find a schedule
whose expected utility exceeds a lower bound.

Different scenarios motivate different schedule exe-
cution models and definitions of the expected value of
a schedule. For example, it may be possible to pre-
dict the amount of resource required by a task before it
is finished. An example of this is so-called quick-look
analysis common in astronomy to predict the amount
of time or data required by an observation. If the pre-
dicted resource use would exceed the resource available,
execution of the event can be terminated without using
the resource. Another example is memory usage—an
image that requires more memory to store than is cur-
rently available is lost, but the memory remains free.
In other situations this may not be possible. For ex-
ample, power utilization often cannot be predicted be-
forehand. Thus, the execution system may be informed
that the resource constraint is violated during event
execution. These distinctions will generally lead to dif-
ferent amounts of resource availability, and thus affect
the probability that an event succeeds. Finally, depen-
dencies both define the set of legal schedules, and affect
the probability that an event succeeds. One example of
this is the calibration example described above: it may

be pointless to perform an observation unless a calibra-
tion has been performed. Another example arises when
modeling activities that affect reusable resources. If the
start of the activity fails to execute, then clearly the
end of the activity also should fail to execute.

In previous work (FD03) we describe an initial set of
complexity results for the problem of finding a sched-
ule that exceeds a given expected utility bound. In
the present work we significantly expand the variety
of execution models that underly the decision problem,
and revise the complexity results to account for the nu-
merous expectation formulae that result. Computing
the expectation for these problems typically requires
numerical integration of arbitrary probability distribu-
tions; we also precisely characterize the impact of this
error on the decision problem.

The paper is organized as follows. We first present
the different execution models. We then describe how
numerical integration error affects the formulation of
the decision problems. We then review the theoreti-
cal results on the decision problems. Next, we describe
some likely heuristics, and discuss drawbacks to them.
We then briefly discuss some empirical results for a sim-
ple problem under two different execution models.

Theory
We first introduce some notation. Let X be a set of
events, and let R be a set of resources. Let rmax be
the capacity of r ∈ R; at all times, the amount of avail-
able resource is bounded between 0 and rmax. Let Ir(z)
be the probability distribution over the initial amount
of available resource r. We will assume without loss
of generality that z < 0 ⇒ Ir(z) = 0 (that is, that
the system always begins with positive amounts of re-
source). Define Cx,r(z) as the probability distribution
over the change in availability of resource r after exe-
cuting x. We assume that all events’ resource impact
probabilities are independent; that is, the distribution
for an event j does not depend on the distribution of any
other event k 6= j. Define Ux(w) as the probability dis-
tribution over the utility received from executing x. Let
P = τi(x, y) be a set of binary precedence constraints
over pairs of events x, y. These constraints require that
x precedes y, and that if x fails then y fails as well.

We will denote a schedule by π and the jth event
in a schedule by πj . We will assume that only sched-
ules that are guaranteed to satisfy all T = τi(x, y) can
be executed. However, these schedules are not guaran-
teed to satisfy the resource bounds or the conditional
failure constraints. During execution, an event fails if
its resource requirement (sampled according to Cx,r(z))
violates the resource bound for r given the currently
available resource. Similarly, if x ∈ τi(x, y) fails to ex-
ecute, then y also fails to execute. We assume that
any event that fails to execute contributes no utility to
the schedule. Our task is to build a schedule π to ei-
ther maximize the expected utility E(π), or such that
E(π) ≥ B. Throughout this paper we will focus on the
decision problem.

Initially, we will assume that there is only a single
resource r, and that r has maximum capacity rmax.
We also consider two different classes of problem. If
Cr,j(z) > 0 only when z < 0, we will call this problem
the Uncertain Consumable Resource Scheduling Prob-
lem (UCRSP). If either Cr,j(z) > 0 only when z < 0,
or Cr,j(z) > 0 only when z > 0 but not both, we re-
fer to this problem as the Uncertain Replenishable Re-
source Scheduling Problem (URRSP). In principle, we
could consider a model in which an event has a non-
zero probability of either consuming or replenishing an
event, but this scenario doesn’t strike us as realistic.

The precise definition of E(π) depends on the event
execution model as described in the introduction. We
provide formal definitions for these two models below.

Open Loop Model
Our first execution model assumes that the execution
system blindly dispatches events without knowledge of
those events’ demands on the resource. Some underly-
ing system informs the execution system of the result-
ing resource state and event success or failure, and if a
job fails due to a resource r, it uses all the remaining
resource. We call this the Open Loop Model.

We define Aπj ,r(z) as the probability distribution
over the availability of resource r after the execution
or rejection of the first j events of π. For convenience,
we define Aπ0,r(z) ≡ Ir(z). Again for convenience, we
define Tπj ,r(z) as follows:

Tπ,r(z) = Aπ,r,j−1(z) ∗ Cπj ,r(z) (1)

Intuitively, Tπj ,r(z) is the resource availability distri-
bution after accounting for the impact of Cπj ,r(z). This
can violate the resource bounds for r, in that Tπj ,r(z)
may exceed 0 for z < 0 or z > rmax.

We can now compute the probability that πj success-
fully executes, conditioned on the previous j−1 events.
The probability πj fails solely due to insufficient re-
sources is

R(πj , r) = 1−
∫ rmax

0

Tπj ,r(z)dz (2)

Let P(πj) = x|τi(x, πj) ∈ P . We always know any x
precedes πj in π, so we can now compute the probability
πj fails:

S(πj , r) =

 ∏
x∈P(πj)

S(x, r)

R(πj , r) (3)

This formula says that event πj will be rejected if it
attempts to allocate more resource than r has available
after the successful execution of the first j− 1 events of
π, and succeeds otherwise. Thus, execution of event πj

succeeds if the resource bounds will not be exceeded,
which happens with probability S(πj , r). The formula
also accounts for the probability that the conditional
failure constraints are satisfied.

0 rmax

A p1,r(z) = Tp1,r(z)|0rmax

S(p1,r) =Ú0

rmax
Tp1,r(z)dz Ir(z)

A p1,r(0) = 1-S(p1,r)

Figure 1: Computing Aπ1,r(z) under the open loop
model.

For simplicity, we will first develop the expectation
formula for UCRSP, then use this to develop the for-
mula for URRSP. In UCRSP we assume that resource
is always consumed, and so the recurrence for Aπj ,r(z)
is as follows1:

Aπj ,r(z) = Tπj ,r(z)|r
max

0 (4)

Aπj ,r(0) =
∫ 0

−∞
Tπj ,r(z)dz = R(πj , r) (5)

Figure 1 shows how this works for computing
Aπ1,r(z).

For the UCRSP, the failure of event πj implies failure
of πk, k > j. The probability of successfully executing
only the first i events of schedule π is given by

X(πi) = (1− S(π, r, i + 1))
i∏

j=0

S(π, r, j) (6)

(where we define S(π, r, n + 1) = 0). The expected
utility of these i events is

∑i
j=1 E(U(πj)). So the ex-

pected utility of the schedule π for UCRSP is given by

EU(π) =
n∑

i=1

X(πi)

 i∑
j=1

E(U(πj))

 (7)

In preparation for writing the expectation of URRSP
we introduce the following definition.

1Our earlier work (FD03) implicitly used this model but
the update formula was incorrect; it has been corrected in
the present paper.

Definition 1 Let π be a permutation of jobs for a
URRSP. A monotone subsequence of π is a sequence of
events all of which modify the resource in the same way,
i.e. all producers or all consumers. Let Mi(π) be these
subsequences. In linear time, we can identify all Mi(π),
and there are m ≤ n of them. Let Mi(π) be a consuming
subsequence if ∀j ∈ Mi(π)Cr,j(z) > 0 only when z < 0,
and a producing subsequence if ∀j ∈ Mi(π)Cr,j(z) > 0
only when z > 0.

We can now compute the expected value EU(π) for
URRSP as follows. First, observe that each Mi(π) de-
fines a UCRSP problem. If Mi(π) is a consuming sub-
sequence, this is obvious. If Mi(π) is a producing subse-
quence, we can treat productions as consumptions and
invert the resource bounds. Equation 7 shows how to
compute E(Mi(π)) But E(π) =

∑m
i=1 E(Mi(π)); this is

because the contribution of each Mi(π)’s utility is solely
dependent on the resource availability distribution and
conditional probabilities when the subsequence begins.
Another way of thinking about this is that we are taking
E(
∏

i Xi) for all Xi independent. Each Xi corresponds
to the UCRSP derived from a monotone subsequence
Mi(π); it takes only polynomial time to construct each
Xi, since all we need to do is find Aπ,r,j(z) to set up each
I(z), and P for each element of the new subsequence,
which we have shown that we can do above. From el-
ementary probability, we know E(

∏
i Xi) =

∏
i E(Xi)

where all of the Xi are independent.

Closed-Loop Model
Our second execution model assumes that, prior to ac-
tual execution, the execution system is informed of the
exact impact on the resource. We assume that if exe-
cuting an event would lead to a violation of the resource
bounds that the event is discarded, the resource is un-
modified, and that no utility for the job is accrued. In
other words, jobs that fail due to any resource consume
no resource2 We call this the Closed Loop Model, since
(at least implicitly) the execution system performs a
sensory action on the event and then decides how to
proceed. The essential difference between the two mod-
els for UCSRP is that here you can attempt to execute
jobs even after one has failed, assuming that all their
constraints are met.

We preserve the intuitive definitions of
Tπj ,r(z), Aπj ,r(z), R(πj , r) and S(πj , r). We mod-
ify the recurrence of Aπj ,r(z) as follows: if the event
succeeds, we chop Tπj ,r(z) so that it is non-zero only
between 0 and rmax. The rest of the time the resource
distribution remains unchanged. We can now write the
following recurrence for Aπj ,r(z):

Aπj ,r(z) = Tπj ,r(z)|r
max

0 +
Y (z)

1− S(πj , r)
(8)

2Note that we could have different execution models for
different resources, for example open-loop for power but
closed-loop for memory. We will not consider this case here.

where Y (z) can be thought of as the ”part” of the dis-
tribution Aπj−1,r(z) which can lead to exhaustion of the
resource when πj is executed. Y (z) is defined below:

Y (z) ∗ Cπj ,r(z) = Tπj ,r(z)|0−∞ (9)

Under this model, failure of an event does not mean
failure of the rest of the schedule. We are now in a
position to write the expected value of a schedule π:

EU(π) =
n∑

i=1

S(πj , r)E(U(πj)) (10)

This formalization works for describing the expected
value of a schedule for either UCRSP or URRSP.

Multiple Resources
In closing, we observe that scaling up to multiple re-
sources does not increase the difficulty of the prob-
lem. Suppose there are q resources. For the closed-
loop model, we define S(πj) =

∏q
r=1 S(πj , r) and then

generalize Equation 10:

EU(π) =
n∑

i=1

S(πj)E(U(πj)) (11)

For the Open Loop model, the probability of success-
fully executing only the first i events of schedule π is
now given by 3

X(πi) =

(
1−

(
q∏

r=1

S(πi+1, r)

)) q∏
r=1

i∏
j=1

S(πj , r)

(12)

.
The expected value equation is the same as Equation

7.

The Decision Problem and Numerical
Error
Numerical integration is prevalent in the handling of
these problems. In the worst of all worlds, we need to
be concerned about how this error propagates when de-
ciding what the expectation bound to be used in the de-
cision problems is. Under these circumstances, we for-
mulate the decision problem by requiring ε the allowed
numerical error tolerance to be part of the problem de-
scription. We then return ”Yes” if we find a schedule
for which the lower bound on the expected value is ≥ B.

We can perform an analysis on equations 10 and 7 to
find out what the error bounds on the expected value
do as a function of the number of events and the error
tolerance of the numerical integration step. We demon-
strate how to calculate the lower bound of Equation 10,
the expected value of a schedule under the Closed Loop
model. This equation is the sum and product of quan-
tities all > 0; the lower bound is calculated by plugging

3This formula was incorrect in (FD03); we thank Neil
Yorke-Smith for identifying the error.

the lower bound of each constituent quantity back into
the equation.

The lower bound on S(πj , r) is calculated as follows.
Let p = |P(πj)|. Let D(πj) = R(πj , r)∪S(πp, r). D(πj)
has p+1 elements. By expanding Equation 3 the lower
bound on S(πj , r) is given by:

S(πj)lb = (−ε)p+1 (13)
+(−ε)p(D1 + D2... + Dp+1)

+(−ε)p−1((D1D2 + D1D3... + DpDp+1)
...

−ε(
∏
j 6=1

Dj +
∏
j 6=2

Dj ...
∏
j 6=n

Dj)

+
∏
j

Dj

Each sum in this equation is a sum of all possi-
ble products of k values from D 4. E(U(πj))lb =
E(U(πj))− ε, so we can now expand Equation 10:

E(π)lb =
n∑

i=1

S(πj)lb(E(U(πi))− ε) (14)

Thus, if we receive a ”Yes” answer to the decision
problem given B and ε we know that E(π)lb ≥ B.

Complexity Results
As we described in the previous section, the decision
problem for either UCRSP or URRSP is posed given
a set of events xi, their corresponding Cx,r(z), Ux(w),
a resource r with corresponding rmax and Ir(z), a set
of metric temporal constraints τi(x, y), a bound B and
a numerical error limit ε. The problem is to find a
permutation π such that E(π)lb ≥ B or report that
no such permutation exists. We now show that these
problems are NP-complete.

Theorem 1 UCRSP is in NP.

Proof 1 Suppose that the UCRSP has no temporal
constraints. First, note we only need to convolve a
linear number of distributions and compute a linear
number of event utilities to compute the schedule util-
ity, whether in the Closed-Loop or Open-Loop models.
The multiplications and sums in the formula presented
above are all polynomial time operations. (This includes
Equation 14; the expectation bounds can be maintained
in a constant number of operations for each event in
the permutation.) All that remains is showing that the
convolution operation is a polynomial time operation.
In the worst case, we can do each convolution using
numerical integration, which takes constant time for a
fixed error (HH64). We can add temporal constraints
back to the UCRSP and preserve NP-completeness.

4The analogy to the binomial expansion of (x−ε)n should
be readily apparent.

The only additional machinery needed is to observe
that we can validate the temporal constraints in polyno-
mial time using the results of Dechter, Meiri and Pearl
(DMP91).

Theorem 2 UCRSP is NP-Hard.

Proof 2 We will reduce the Knapsack problem to
UCRSP. A Knapsack item j = (s, u) where s is the
size and u is the utility. Thus, we map j to a UCRSP
event j with Cr,j(z) = δ(s) and Uj(w) = δ(u) where
δ is Dirac’s delta function. The initial amount of re-
source r in the UCRSP is the bound on the Knapsack
size R. The utility bound of the Knapsack is mapped
to the expected utility bound of our problem. There
are no temporal constraints in the resulting UCRSP.
This mapping requires only linear time. Now consider
a schedule π that satisfies the expected utility bound of
the UCRSP. Any schedule can be mapped into a parti-
tion of jobs by the following linear time procedure: while
there is still any resource available, add πj to the Knap-
sack. If adding πj violates the resource constraint, πk

for k ≥ j are not in the Knapsack. Thus, the set of
Knapsack items obeys the Knapsack constraint. Fur-
ther, by construction of the UCRSP, each event j that
contributes utility is guaranteed to contribute all of is
utility, since all such events execute with probability 1.
It is clear from the simplicity of this mapping that the
(expected) utility of the schedule is the value of a solu-
tion to the Knapsack. Thus, a solution to the UCRSP
is a solution to the Knapsack problem. Thus, UCRSP
is NP-Hard.

Corollary 1 UCRSP is NP-Complete.

Theorem 3 URRSP is in NP.

Proof 3 Suppose we are given a permutation π. Only
linear work is required to identify the Si(π). From The-
orem 1, only polynomial work is required to compute
all of the E(Si(π)), and only linear work is required to
compute E(π) from E(Si(π)). Thus, the total work to
compute the expectation E(π) is polynomial, and thus
URRSP is in NP.

Theorem 4 URRSP is NP-Hard.

Proof 4 It is trivial to see that UCRSP can be reduced
to URRSP in polynomial time, since URRSP is a gen-
eralization of UCRSP. Further, any solution to the re-
sulting URRSP is trivially a solution to the original
UCRSP. Thus, URRSP is NP-Hard.

Modifications
In this section we explore the impact of some more of
the assumptions we have made above.

The first relaxation is to allow two events to be sched-
uled at exactly the same time. In this case, we have
to modify the task execution model, and thus the fail-
ure model. One option is the ”conservative” model, in
which two events scheduled simultaneously result in a
single resource allocation. In this case, if the joint re-
source request exhausts the resource, both tasks fail.

Under these assumptions, the problem is still in NP.
However, this model is unlikely to be realistic, so we do
not consider it of interest.

An alternative is to assume that two events scheduled
simultaneously are executed in arbitrary order. Thus,
it is equiprobable that either event occurs first. In this
case, the problem is no longer known to be in NP. The
reason is that the certificate, a set of events such that
the execution order is not determined, may not be ver-
ifiable in polynomial time. Consider an arbitrary set
of simultaneous resource allocations. Is there a per-
mutation of this set that exceeds a utility bound U∗?
This is simply a version of UCRSP, which we have just
shown is in NP under the assumption that we enforce
a permutation of event occurences. Thus, if P 6= NP,
then UCRSP with the relaxed certificate and the liberal
event execution model is not in NP.

The second relaxation is to permit the scheduler to
return a partial ordering of the events rather than a
total ordering. It is easy to see that this puts us in
the same position as allowing two or more simultaneous
events in a schedule. We can no longer guarantee that
a schedule is a solution in polynomial time, because the
validatation problem requires solving an NP-complete
problem.

The third relaxation is the limitation on the resource
modification probabilities. As we have said previously,
we have discounted the possibility that a job could ei-
ther produce or consume resources. Relaxing this as-
sumption requires revising the expectation calculation
again. However, the crux of the argument still holds.
We can produce n independent variables whose expec-
tations we can sum; in this case, one for each job. Each
of these still requires only polynomial work to build, be-
cause we still only need to perform numerical integrals
like those described in Equations 3 and 8.

We now say a few words about the distinction be-
tween renewable resources and reusable resources in the
context of uncertainty. A reusable resource is one that
is allocated by an activity for a period of time, then
returned for other activities to use. Reusable resources
can be modeled using renewable resources quite eas-
ily; an event that consumes the resource represents the
reusable activity start, while an event that represents
the replenishment represents the end. The replenish-
ment is constrained to replenish the same amount of
resource that the start event used. Thus, when the
ending event of an activity is executed, no numerical
integration is required to update the resource availabil-
ity distribution, but it may be necessary to perform
a numerical integration step to determine the success
probability.

As a final point, we note that the interesting as-
pects of these problems are the uncertainty in the re-
source consumption. First, consider the problem of un-
certainty in the utility with certainty in the resource
consumption and no temporal constraints. The prob-
lem is now identical to the Knapsack problem. The
task is to find those tasks that can be executed (i.e.

put in the Knapsack) whose expected utility exceeds a
bound. From probability, E(Pj(U)Pk(U)) = EPj(U)+
EPk(U), so this is simply another Knapsack problem.
The problem with temporal constraints added simply
limits the tasks that can simultaneously be in the Knap-
sack. Another aspect of the problem with uncertain re-
source consumption that is of interest is that tasks in a
schedule can be partitioned into roughly 3 sets: those
guaranteed to execute, those guaranteed not to execute,
and those that may execute if tasks scheduled earlier do
not overconsume (or overproduce) the resource. This is
a more interesting problem than the traditional schedul-
ing problem with job utility, where tasks are either ac-
cepted or rejected. It is not possible to reject tasks out
of hand until the resource is exhausted with probability
1.

Summary

In summary, the problem of finding totally ordered
schedules of activities with uncertain resource impact
and uncertain reward such that the expected utility ex-
ceeds a bound is NP-complete. However, the problem
of producing a flexible job ordering is not in NP if
P 6= NP because the problem of validating the flexi-
ble schedule is itself an NP-complete problem. This is
in stark contrast to the case of scheduling jobs whose
resource consumption is known for certain(Mus02) 5.

Practice

We only experimented on UCRSPs. (URRSPs were too
expensive to import and our budget for this project was
limited.) However we experiments with both closed and
open loop models.

We devised four heuristics to choose among unsched-
uled events: maximize the expected partial schedule
utility (E), minimize the expected resource consump-
tion of the job (R), minimize the probability of job fail-
ure given the current partial schedule (S), and maxi-
mize the expected value of the job (V). One problem
with using the E heuristic is that it takes approximately
15 times as long to find a schedule as the others, due to
the complexity of the Monte Carlo estimate of the value
of the whole schedule at each step. One approximation
is to ignore the condition that previous jobs succeeded,
and instead use the probability that the schedule up
to a particular job will complete in the given amount
of resources. This is easily computed for Gaussian re-
source usage distributions as it it simply the sum of the
usages for the jobs, which is itself a Gaussian. However,
it overestimates the value of each schedule. We refer to
this approximation to E as E∗

5Note that the reference is for non-rejectable jobs with-
out utility. As long as jobs are definitely included or not
included in a schedule, the exact order of the jobs can be
left up in the air and certificates can still be validated in
polynomial time for the case of scheduling jobs such that
the reward exceeds a bound

To test the performance of the heuristics we per-
formed a number of experiments on relatively simple,
random domains. We considered problems with be-
tween ten and 20 jobs to be scheduled, and with ap-
proximately half that many constraints. Each of the
jobs had a Gaussian distribution for the quantity of
resources it consumed, with a range of values for the
means. We considered problems in which the resource
consumption means had uniformly low variance, uni-
formly high variance, and random variance, and we
varied the resource limit between ten percent and 50
percent of the expected resource requirement for all the
jobs. For each setting of these parameters, we gener-
ated 100 problems, and ran each of the heuristics on
each problem.

Open Loop Model
We evaluated the heuristics by using them greedily to
select a single valid schedule. We then computed the
expected value of that schedule as shown in Equation 7.
The performance of the three heuristics was consistent
over all sizes of problems and resource limits, so we
show the results for a single setting of those parameters
in Table 1. In this case, the problems had 20 jobs, ten
constraints, mean resource usages for the jobs uniformly
distributed between ten and 50, job utilities uniformly
distributed between one and ten, and a resource limit
of 60 (ten percent of the expected resources required
by all the jobs). We were particularly interested in the
effects on the algorithms of changing the variance of
the resource usage of the jobs, so we present results for
three different resource usages.

As the left-hand columns of Table 1 show, the E
heuristic (choose the job that maximizes the expected
utility of the schedule built so far) and its approxi-
mation E∗ considerably outperform the others on all
these problems, with the R heuristic (minimize the re-
source consumption of the job) performing next-best.
One situation where we might expect E to perform less
well is when the resource consumption of a job and
its utility are positively correlated, since E gets rela-
tively little information in this case. We performed ad-
ditional experiments on such problems, but found that
it still outperforms the other heuristics. Results are
shown on the right-hand side of Table 1 for the low-
variance (0.1−−0.2) problems only. We also examined
the case where job resource consumption and utility are
anti-correlated, leading to very problems, and found as
expected that most of the heuristics find high-quality
schedules in this case. In fact, E, E∗, R, and V all
tend to produce very similar schedules for these prob-
lems, and the solutions found are usually very close to
optimal (on small problems we have computed the op-
timal for).

One interesting point is the performance of the ap-
proximation E∗. This is generally very close to E, but
requires less than five percent of the computation time.
Since E∗ approximates E by ignoring the possibility
that previous actions have already failed, this suggests

Table 1: (Left) Performance of the heuristics on “uncorrelated” problems with 20 jobs, 10 constraints, and a resource
limit of 60. (Right) Performance of the heuristics on problems with correlated and anti-correlated resource usage
and utility.

Job Variance Heuristic Mean Variance Problem Type Heuristic Mean Variance
E 19.42 29.63 E 19.25 29.62
E∗ 19.40 29.72 E∗ 19.25 29.56

0.1–1.0 R 18.52 33.97 Uncorr. R 18.50 34.10
S 17.58 30.36 S 16.04 26.95
V 15.38 29.39 V 15.36 31.13
E 19.25 29.62 E 10.08 0.07
E∗ 19.25 29.56 E∗ 10.08 0.07

0.1–0.2 R 18.50 34.10 Corr. R 7.21 0.57
S 16.04 26.95 S 8.02 0.78
V 15.36 31.13 V 9.36 0.33
E 19.60 31.19 E 27.73 50.06
E∗ 19.62 30.98 E∗ 27.73 50.03

0.8–1.0 R 18.53 33.67 Anticor. R 27.73 50.11
S 18.31 34.14 S 23.64 51.17
V 15.40 28.13 V 27.74 50.04

that these failure probabilities are relatively unimpor-
tant in determining the behaviour of a schedule on these
problems—most schedules can be divided into jobs that
almost certainly succeed, and jobs that almost certainly
fail, and the set of jobs that fall into neither of these
categories is very small, so computing their probabili-
ties exactly has little effect on the schedule.

Heuristics for Closed Loop Models

We replicated the results using the closed loop model
for UCRSP, computing the expected value of schedules
as shown in Equation 10. For the different variance
ranges of the problems we found the same patters of
performance for all of them, so we present only the low-
variance results in Table 2. The interesting thing to
note here is that the V heuristic that performed very
badly on the open-loop problems performs as well or
better than E on closed-loop. V chooses jobs in order
of their value, so for open-loop execution it frequently
selects jobs with high resource usage very early in the
schedule, so subsequent jobs, even if they are very cheap
in terms of resources, never get executed. With closed-
loop execution these jobs still get executed (as long as
their constraints are satisfied) even after previous jobs
have failed, so simply building a schedule with the jobs
in order of their value is a pretty good heuristic in this
case.

Future work

Current assumptions make it hard to model spacecraft
downlink problem where the utility depends on getting
the data back to earth, not just getting it into the on-
board memory. This model interacts with the assump-
tion that failed events generate no utility, and also that
the utilities of the jobs are independent.

Table 2: (Performance of the heuristics on “uncorre-
lated,” correlated and anti-correlated closed-loop prob-
lems with 20 jobs, 10 constraints, and a resource limit
of 60.

Problem Type Heuristic Mean Variance
E 19.42 29.35
E∗ 19.41 29.34

Uncorrel. R 18.57 34.17
S 16.09 27.02
V 19.38 27.78
E 10.15 0.08
E∗ 10.15 0.08

Corr. R 7.30 0.64
S 8.09 0.80
V 10.29 0.12
E 27.89 49.97
E∗ 27.88 49.94

Anticor. R 27.89 49.96
S 23.81 50.98
V 27.89 49.95

Ther are also much richer constraint models to con-
sider. At present we only have precedence constraints,
but we could also consider interval constrants on when
jobs must be done for example. More interestingly, the
definition of τ currently ties precedence and conditional
event execution. these two ideas can be separated, so
that x and y can occur in either order, but failure of
one implies failure of another. This leaves unresolved
what happens to the utility if x occurs before y, x suc-
ceeds and y fails. Utility model can be fixed, and the
expectation formulas fixed with little difficulty.

References
J. Boyan and M. Littman. Exact solutions to time-
dependent MDPs. In NIPS, pages 1026–1032, 2000.
M. Drummond, J. Bresina, and K. Swanson. Just-
In-Case scheduling. Proceedings of the 12th National
Conference on Artificial Intelligence, pages 1098–1104,
1994.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61–94, 1991.
J. Frank and R. Dearden. Scheduling in the face of
uncertain resource consumption and utility (poster).
Proceedings of the 9th International Conference on the
Principles and Practices of Constraint Programming,
2003.
J. M. Hammersley and D. C. Handscomb. Monte Carlo
Methods. J. Wiley, 1964.
L. Khatib, J. Frank, D. Smith, R. Morris, and J. Dun-
gan. Interleaved observation execution and reschedul-
ing on earth observing systems. In To Appear, Pro-
ceedings of the ICAPS Workshop on Plan Execution,
2003.
N. Meuleau, D. Smith, and R. Washington. Optimal
limited contingency planning. In Proceedings of Un-
certainty in Artificial Intelligence, 2003.
N. Muscettola. Computing the envelope for stepwise-
constant resource allocations. Proceedings of the 9th
International Conference on the Principles and Prac-
tices of Constraint Programming, 2002.
J. Schneider, J. Boyan, and A. Moore. Value function
based production scheduling. In Jude Shavlik, editor,
Proceedings of the 15th International Conference on
Machine Learning, pages 522–530. Morgan Kaufmann,
San Francisco, CA, 1998.

